Environmental Threats and Their Costs. The Series

HVAC Contractors
April 6, 2011
Portable Air Conditioners are a Good Investment
August 11, 2011
Show all

Environmental Threats and Their Costs. The Series

The most common environmental threats to server rooms are temperature, humidity, water leaks, human error, intrusion, vibration, and power outage. Many of these threats, such as temperature and humidity, are related, which complicates environment monitoring and heightens the need for an automated, sophisticated system.

This series on Environmental Threats and Their Costs starts with the biggest threat to computer hardware, temperature.


Temperature is the main environmental threat to computer hardware. The generally accepted, ideal temperature is between 68 and 74 degrees Fahrenheit (20 to 24 degrees Celsius).

Excessive heat degrades network performance and causes downtime. As the temperature increases, a heat sinks fan works harder to cool the central processing unit (CPU). Continuous overworking causes the fan to fail, leading to a machine overheating. A machine shuts down when it reaches an unsafe temperature in order to prevent permanent damage. An administrator must then be located, day or night, go to the machine, and reboot it after it has cooled. Consequently, services hosted by a down machine are unavailable until it is restarted, which can take minutes or hours. If the server hosts critical services (e.g., e-commerce, user validation, email) that are not distributed to backup servers, revenues can be lost, users cannot login, and communications are interrupted. If the shut down is not done properly, data can be lost.

Excessive heat and rapid temperature changes also damage equipment. Rapid temperature increases can increase humidity, while rapid drops can cause water in humid air to condense on equipment. Together, heat and moisture accelerate the break down of materials used in microchips, motherboards, and hard drives, which is called premature aging. In worst cases, a machine won’t shut down when the temperature exceeds safe levels, and circuits are damaged. Ultimately, heat-damaged equipment must be replaced, increasing the cost of network maintenance.

Controlling temperature is becoming more important and more difficult because of changes in equipment design and greater use of network services. New equipment runs hotter because it runs faster and does more work. Also, more circuits are placed closer and closer together, trapping heat in a smaller space. Smaller equipment also means that more equipment can be placed in the same space, usually packed tighter together. The increase in density of equipment causes a rise in the amount of heat dissipating in a rack cabinet. Increased network usage also increases heat, so as usage levels change during the day, so does the temperature and the need for cooling. For networks that operate near capacity 24 hours a day, every day of the year, there is little, if any, time for machines to cool down.


Look for our next article which addresses the problem of humidity in the server room.